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Abstract

This paper presents a multi-dimensional upwind finite volume scheme for solving the gasdynamic Euler and Navier–
Stokes equations. In evaluating the inviscid numerical fluxes, the full governing equations are solved on every cell interface
to account for the multi-dimensional effects. To make the scheme efficient, the governing equations are solved on every cell
interface using an operator splitting method: in the first step, the contribution of inviscid terms is modeled by solving the
linearized Euler equations in characteristic form; in the second step, the contribution of viscous terms are included by a
simple correction procedure. The resulted scheme is efficient and easy to be applied on general control volumes. Several
numerical test cases are presented to verify the proposed scheme.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, there have been considerable efforts to develop so called ‘‘genuinely multi-dimensional
schemes’’ for solving hyperbolic conservation laws. These schemes are motivated by various considerations
and expectations, such as improving the stability [3] and resolution properties [10], facilitating the applications
for some specific problems [3,9], and cure the deficiencies [13] of more traditional methods for solving multi-
dimensional problems such as the dimensional splitting finite difference schemes and the ‘‘grid-aligned’’ finite
volume schemes [15]. Since mid-1980s, there have been a number of proposals on the construction of genuinely
multi-dimensional schemes, which include: (1) the fluctuation-splitting schemes for the equations of gasdy-
namics developed by Roe [4], Deconinck et al. [4], van Leer [19], and many others; (2) the corner transport
upwind (CTU) scheme proposed by Colella [3]; (3) the wave propagation algorithm for multi-dimensional sys-
tems of conservation laws presented by Le Veque [8,9]; (4) the weighted-average-flux (WAF) scheme of Billet
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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and Toro [1]; (5) the method of transport (MoT) of Fey [6] which has been improved to MoT-ICE by Noelle
[11]; (6) the finite volume evolution Galerkin (FVEG) methods developed by Lukáčová-Medvid’ová et al. [10];
(7) the two-dimensional multi-state linear Riemann solver proposed by Brio et al. [2]; and (8) the multi-dimen-
sional central scheme of Kurganov et al. [7]. This list is by no means exhaustive, many related works can be
found in the references therein.

Despite the advantages of these genuinely multi-dimensional schemes mentioned above, many of them are
very complex, computationally expensive, and/or currently applicable only on rectangular meshes. The appli-
cations of these schemes to solve the compressible Navier–Stokes equations are rare. The goal of the present
paper is therefore to develop a multi-dimensional finite volume scheme for solving gasdynamic equations
which satisfies the following requirements:

(1) The scheme must be efficient, which means that the cost of the present scheme is comparable to or only
slightly lager than the dimensional splitting finite difference schemes and the grid-aligned finite volume
schemes.

(2) The scheme must be simple enough to be applied on general shape control volumes in both two and three
dimensions.

(3) The scheme can be applied to solve the Euler as well as the Navier–Stokes equations.

The ‘‘building block’’ of the present method is to compute the numerical fluxes on cell interfaces by solving
full governing equations instead of their augmented one-dimensional counterparts as being done in the grid-
aligned finite volume schemes [18]. The present finite volume scheme is quite similar in spirit to the corner
transport upwind (CTU) scheme proposed by Colella [3] as well as the wave propagation algorithm of Le
Veque et al. [9]. However, our method is more efficient than these methods by adopting the operator splitting
method and a linear solver in characteristic form when updating the dependent variables on cell interface.
Another feature of the present scheme is the inclusion of the viscous contribution when evaluating the inviscid
fluxes of the Navier–Stokes equations. In this way, the multi-dimensional effects due to the viscous fluxes can
be also considered and the resulted scheme is second order accurate in smooth regions. The present method
can be applied on general shape control volumes for both structured and unstructured grids. In this paper,
only the two-dimensional problems are considered although it is straightforward to extend the present method
to three-dimensional cases.

This paper is organized as follows. In Section 2, the present finite volume scheme is presented and the two-
dimensional reconstruction procedure is introduced. In Section 3, the central part of the present paper, the
algorithm for evaluating the inviscid numerical fluxes is proposed and discussed. In Section 4, we present some
numerical test cases for both inviscid and viscous flow problems. And the conclusions are given in Section 5.

2. The finite volume scheme

2.1. The governing equations

We consider the two-dimensional Navier–Stokes equations describing the flow of compressible viscous
fluid. In conservation form the equations are
oU

ot
þ oFðEÞ

ox
þ oGðEÞ

oy
¼ oFðV Þ

ox
þ oGðV Þ

oy
; ð1Þ
where U is the vector of the conserved variables given as U = [q,qu,qv,qE]T. The detailed formulations of the
flux terms are well known and are omitted here for brevity. This set of equations are closed by the equation-of-
state of ideal gas
p ¼ ðc� 1Þq E � u2 þ v2

2

� �
.

The Euler equations can be considered as a special case of the Navier–Stokes equations in which the coefficient
of viscosity is set to zero.
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2.2. The finite volume scheme

We consider some two-dimensional domain in x–y space and assume that it is discretized into structured
quadrilateral control volumes. Examples of typical control cells are shown in Fig. 1. Finite volume schemes
for Eq. (1) are obtained by considering the control volume balance equation
Z Z

Xij

ðUnþ1 �UnÞdxdy þ
Z tnþ1

tn

I
oXij

FðEÞiþGðEÞj
� �

� ndldt ¼
Z tnþ1

tn

I
oXij

FðV ÞiþGðV Þj
� �

� ndldt; ð2Þ
where Xi,j is the control volume, oXi,j is the boundary of Xi,j, n = nxi + nyj is the outward unit vector normal to
the surface oXi,j. On a quadrilateral control volume with its faces denoted by Ik (k = 1, . . . , 4), the finite volume
scheme can be written as
Unþ1
ij �Un

ij

� �
Xi;j þ

X4

k¼1

Z tnþ1

tn

Z
Ik

FðEÞiþGðEÞj
� �

� ndldt ¼
X4

k¼1

Z tnþ1

tn

Z
Ik

FðV ÞiþGðV Þj
� �

� ndldt; ð3Þ
where Un
ij is the average of U inside Xi,j defined by
Un
i;j ¼

R R
Xi;j

Un dxdy

Xi;j

; Xi;j ¼
Z Z

Xi;j

dxdy. ð4Þ
In this paper, we are interested in the finite volume scheme that is at most second order accurate. Therefore,
it is sufficient to integrate the flux terms in Eq. (3) by using the midpoint rule. Therefore we have
Unþ1
ij �Un

ij

� �
Dt

þ 1

Xi;j

X4

k¼1

WðEÞ
nþ1

2ð Þ
k Dlk

� 	
�
X4

k¼1

WðV Þ
nþ1

2ð Þ
k Dlk

" #
¼ 0; ð5Þ
where Dlk is the length of Ik interface, and the inviscid and viscous numerical fluxes are defined by
WðEÞ
nþ1

2ð Þ
k ¼ WðEÞk U

nþ1=2
k

� �
¼ H

ðEÞ
k U

nþ1=2
k

� �
� nk
and
WðV Þ
nþ1

2ð Þ
k ¼ WðV Þk U

nþ1=2
k ;

oU

ox

� 	nþ1=2

k

;
oU

oy

� 	nþ1=2

k

 !
¼ H

ðV Þ
k � nk

� �
U

nþ1=2
k ;

oU

ox

� 	nþ1=2

k

;
oU

oy

� 	nþ1=2

k

 !
; ð6Þ
where the tensors of inviscid and viscous fluxes are defined, respectively, by
H
ðEÞ
k ¼ F

ðEÞ
k iþG

ðEÞ
k j
and
Face 1 1/ 2,i jI I −=

Face 2 , 1/ 2i jI I −=

Face 4 , 1/ 2i jI I +=

Control Volume ,i jΩ

Face 3 1/ 2,i jI I +=

x

y

Fig. 1. Typical control volumes for a two-dimensional domain.
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H
ðV Þ
k ¼ F

ðV Þ
k iþG

ðV Þ
k j;
and U
nþ1=2
k is the vector of conservative variables on the midpoint of the interface Ik at
tnþ1=2 ¼ tn þ Dt
2

.

In Section 3, the evaluation of U
nþ1=2
k and WðEÞ

nþ1
2ð Þ

k will be presented in detail, and the contribution of the mul-

ti-dimensional effect to the numerical fluxes will also be addressed. To compute the viscous flux WðV Þ
nþ1

2ð Þ
k , it is

apparent that oU
ox

� �nþ1=2

k
, ðoU

oy Þ
nþ1=2
k must be evaluated on the midpoint of the interface Ik. This procedure turns

out to be cumbersome and computationally expensive. In order to construct an efficient multi-dimensional
scheme as we have promised in Section 1, we propose to modify the finite volume scheme, Eq. (5), into a pre-
dictor–corrector scheme to account for the viscous effect without evaluating Eq. (6) explicitly. The resulted
scheme can be summarized as:

the predictor step
Unþ1
ij ¼ Un

ij �
Dt

Xi;j

X4

k¼1

WðEÞ
nþ1

2ð Þ
k Dlk þ

Dt

Xi;j

X4

k¼1

WðV Þ
ðnÞ

k Dlk; ð7Þ

the corrector step

Unþ1
ij ¼ Unþ1

ij þ
Dt

2Xi;j

X4

k¼1

WðV Þ
ðnþ1Þ

k �WðV Þ
ðnÞ

k

� 	
Dlk. ð8Þ

It is easy to prove this scheme is second order accurate provided that U
nþ1=2
k is evaluated properly using the

procedure that will be presented in Section 3. When the Euler equations are considered, Eqs. (7) and (8) will
reduce to
Unþ1
ij ¼ Un

ij �
Dt

Xi;j

X4

k¼1

WðEÞ
nþ1

2ð Þ
k Dlk.
The predictor–corrector procedure, Eqs. (7) and (8), for handling viscous terms is new to our knowledge. This
procedure can be used in viscous flow computation for many schemes (such as the MoT [6] and the FVEG
[10]) that take the transport effect into consideration when computing the cell interface fluxes.

2.3. Reconstruction

In the framework of the finite volume method, at time level t = tn, it is necessary to reconstruct a piecewise
polynomial function, U(x,y, tn), from the cell average data Un

i;j. For a second order scheme, a piecewise linear
reconstruction is sufficient. In the present paper, the reconstruction is carried out in terms of primitive vari-
ables W = (q,u,v,p)T. When a piecewise linear reconstruction is concerned, we have
Wn
i;j ¼Wnðxi;j; yi;jÞ ¼Wn

i;j;
where Wn
i;j is the vector of the cell averages of primitive variables on control volume Xi,j and Wn

i;j is the vector
of the primitive variables at the centroid of Xi,j, i.e., (xi,j,yi,j). Therefore, we will not distinguish between Wn

i;j

and Wn
i;j in the following reconstruction procedure.

In the present reconstruction procedure, we first compute the gradient of primitive variables, rWn
i;j, by
rWn
i;j �

1

2Xi;j

L Wn
iþ1;j �Wn

i;j;W
n
i;j �Wn

i�1;j

� �
ðniþ1=2;jDliþ1=2;j � ni�1=2;jDli�1=2;jÞ

h
þL Wn

i;jþ1 �Wn
i;j;W

n
i;j �Wn

i;j�1

� �
ðni;jþ1=2Dli;jþ1=2 � ni;j�1=2Dli;j�1=2Þ

i
; ð9Þ
where L is the limiter which is chosen as
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Lða; bÞ ¼ maxðab; 0Þðaþ bÞ
a2 þ b2

ð10Þ
to suppress the non-physical oscillations near the flow discontinuities. Using this gradient, the piecewise linear
reconstruction in Xi,j is expressed as
Wnðx; yÞjðx;yÞ2Xi;j
¼Wn

ij þ
oW

ox

� 	n

i;j

ðx� xijÞ þ
oW

oy

� 	n

i;j

ðy � yijÞ. ð11Þ
3. Genuine multi-dimensional inviscid numerical fluxes

In this section, we will propose a multi-dimensional approach to evaluate the inviscid numerical flux
WðEÞ
nþ1

2ð Þ
k ¼ WðEÞk U

nþ1=2
k

� �
¼ H

ðEÞ
k U

nþ1=2
k

� �
� nk. ð12Þ
The central idea of the present approach is to compute U
nþ1=2
k at the mid-point of Ik by solving the full Navier–

Stokes equations
oU

ot
þ oFðEÞ

ox
þ oGðEÞ

oy
¼ oFðV Þ

ox
þ oGðV Þ

oy
ð13Þ
in stead of their augmented one-dimensional counterparts as having been done in the grid-aligned finite vol-
ume schemes [18]. In order to construct an efficient multi-dimensional scheme, we solve Eq. (13) using a two
step operator splitting method. In the first step, we compute an intermediate value of U

nþ1=2
k denoted as

_
U

nþ1=2
k

by solving the Euler equations
oU

ot
þ oFðEÞ

ox
þ oGðEÞ

oy
¼ 0 ð14Þ
using Un as initial value. In the second step,
_
U

nþ1=2
k is corrected to get U

nþ1=2
k by solving
oU

ot
� oFðV Þ

ox
� oGðV Þ

oy
¼ 0. ð15Þ
In what follows, we will consider the evaluation of the inviscid numerical flux on interface Ii+1/2,j only for
simplicity.

3.1. The linearized Euler equations in characteristic form

To evaluate
_
U

nþ1=2
iþ1=2;j, we need not to solve Eq. (14) rigorously. One of the most commonly used practices is

to solve a linearized version of Eq. (14). Using the equations in the primitive variable and/or the characteristic
variable forms will also facilitate the solution procedures sometimes. In this paper, we use the linearized Euler
equations in characteristic form similar to those used in [10]. These equations can be derived as follows.

Referring to Fig. 2, we construct a local coordinate system ðx̂; ŷÞ where x̂-axis is aligned with ni+1/2,j, the
outer unit normal vector of interface Ii+1/2,j. The Euler equations in terms of primitive variables in reference
frame ðx̂; ŷÞ are
Ŵt þ A1ðŴÞŴx̂ þ A2ðŴÞŴŷ ¼ 0; ð16Þ

where
Ŵ :¼

q

û

v̂

p

0
BBB@

1
CCCA; A1 :¼

û q 0 0

0 û 0 1
q

0 0 û 0

0 cp 0 û

0
BBB@

1
CCCA; A2 :¼

v̂ 0 q 0

0 v̂ 0 0

0 0 v̂ 1
q

0 0 cp v̂

0
BBB@

1
CCCA; ð17Þ
and



1/ 2,i j+n

x̂ŷ

,i jΩ

x

y

1/ 2,i jI +

Fig. 2. Local coordinate systems ðx̂; ŷÞ at interface Ii+1/2,j. The x̂-axis is aligned with ni+1/2,j and ŷ-axis is normal to ni+1/2,j.
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û ¼ u cos hþ v sin h; v̂ ¼ �u sin hþ v cos h ð18Þ

are the normal and tangential components of the velocity vector, respectively. h is the angle between ni+1/2,j

and the x-axis, i.e.,
h ¼ arccosðniþ1=2;j � iÞ.

After computing the left and right states of the primitive variables
Wn;L
iþ1=2;j ¼Wnðxiþ1=2;j; yiþ1=2;jÞ





ðx;yÞ2Xi;j

ð19Þ
and
Wn;R
iþ1=2;j ¼Wnðxiþ1=2;j; yiþ1=2;jÞ





ðx;yÞ2Xiþ1;j

ð20Þ
at interface Ii+1/2,j using Eq. (11), we compute a reference state
~W ¼ Wn;L
iþ1=2;j þWn;R

iþ1=2;j

� �.
2 ð21Þ
and linearize Eq. (16) about ~W to get the linearized Euler equations
Ŵt þ A1
~̂
W
� �

Ŵx̂ þ A2
~̂
W
� �

Ŵŷ ¼ 0; ð22Þ
where
~̂
W is ~W in the local coordinate system ðx̂; ŷÞ. The eigenvalues of A1ð ~̂

WÞ are:
k1 ¼ ~̂u� ~a;

k2 ¼ k3 ¼ ~̂u;

k4 ¼ ~̂uþ ~a

ð23Þ
with
~̂u ¼ ~u cos hþ ~v sin h; ~̂v ¼ �~u sin hþ ~v cos h.
The matrix of corresponding right eigenvectors and its inverse are, respectively,
R ~̂
W
� �

¼

� ~q
~a 1 0 ~q

~a

1 0 0 1

0 0 �1 0

�~q~a 0 0 ~q~a

2
6664

3
7775; R�1 ~̂

W
� �

¼ 1

2

0 1 0 �1
~q~a

2 0 0 �2
~a2

0 0 �2 0

0 1 0 1
~q~a

2
66664

3
77775.
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Multiplying Eq. (22) by R�1ð ~̂
WÞ from the left we obtain the characteristic system
ŵt þ

~̂u� ~a 0 0 0

0 ~̂u 0 0

0 0 ~̂u 0

0 0 0 ~̂uþ ~a

0
BBB@

1
CCCAŵx̂ ¼ Ŝ; ð24Þ
where
ŵ ¼

ŵ1

ŵ2

ŵ3

ŵ4

0
BBB@

1
CCCA ¼

1
2
� p

~q~aþ u cos hþ v sin h
� �

q� p
~a2

u sin h� v cos h
1
2

p
~q~aþ u cos hþ v sin h
� �

0
BBBBB@

1
CCCCCA ð25Þ
are the characteristic variables and
Ŝ ¼

ŝ1

ŝ2

ŝ3

ŝ4

0
BBB@

1
CCCA ¼

� 1
2
~a oŵ3

oŷ � ~̂v oŵ1

oŷ

�~̂v oŵ2

oŷ

�~a oŵ1

oŷ þ ~a oŵ4

oŷ � ~̂v oŵ3

oŷ

1
2
~a oŵ3

oŷ � ~̂v oŵ4

oŷ

0
BBBBB@

1
CCCCCA ð26Þ
are the source terms.

3.2. The evaluation of
_
U

nþ1=2

iþ1=2;j

Unlike in [10], we solve Eq. (24) in terms of one-dimensional characteristics, and the multi-dimensional
effects are considered by including the source terms Ŝ. The advantages of this approach are very simple, com-
putationally efficient and easy to be implemented on general control volumes. In the present paper, Eq. (24) is
solved using the following simple procedure:
_
ŵl

� �nþ1=2

iþ1=2;j
¼ ŵl xiþ1=2;j � klðnxÞniþ1=2;jDt=2; yiþ1=2;j � klðnyÞniþ1=2;jDt=2; tn

� �
þ ŝlDt=2; ðl ¼ 1; 2; 3; 4Þ ð27Þ
in which the source terms are frozen at tn. When the piecewise linear reconstruction is considered, Eq. (27)
yields
_
ŵl

� �nþ1=2

iþ1=2;j
¼ 1þ signðklÞ

2
ðŵlÞni;j þ

oŵl

ox

� 	n

i;j

xiþ1=2;j � xi;j � klðnxÞniþ1=2;jDt=2
h i(

þ oŵl

oy

� 	n

i;j

yiþ1=2;j � yi;j � klðnyÞniþ1=2;jDt=2
h i

þ ðŝlÞni;jDt=2

)

þ 1� signðklÞ
2

ðŵlÞniþ1;j þ
oŵl

ox

� 	n

iþ1;j

xiþ1=2;j � xiþ1;j � klðnxÞniþ1=2;jDt=2
h i(

þ oŵl

oy

� 	n

iþ1;j

yiþ1=2;j � yiþ1;j � klðnyÞniþ1=2;jDt=2
h i

þ ðŝlÞniþ1;jDt=2

)
. ð28Þ
After computing
_
ŵ

nþ1=2
iþ1=2;j, the corresponding primitive variables

_
W

nþ1=2
iþ1=2;j and conservative variables

_
U

nþ1=2
iþ1=2;j can

be easily derived.
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3.3. The evaluation of U
nþ1=2

iþ1=2;j

The contribution of the viscous effect to the numerical fluxes can be modeled by solving Eq. (15). In this
way, the

_
U

nþ1=2
iþ1=2;j can be corrected to get U

nþ1=2
iþ1=2;j. Eq. (15) can be solved by applying the finite volume scheme

on the control volume Xi+1/2,j = Xi,j[Xi+1,j, which gives
U
nþ1=2
iþ1=2;j ¼_U

nþ1=2
iþ1=2;j þ

Dt
2ðXi;j þ Xiþ1;jÞ

X4

k¼1

WðV Þ
ðnÞ

k Dlk

 !
Xi;j

þ
X4

k¼1

WðV Þ
ðnÞ

k Dlk

 !
Xiþ1;j

2
4

3
5. ð29Þ
This procedure is very efficient because the viscous fluxes in Eq. (29) are needed anyway to solve Eq. (7).

Using U
nþ1=2
iþ1=2;j, the inviscid flux WðEÞ

nþ1
2ð Þ

iþ1=2;j can be determined by
WðEÞ
nþ1

2ð Þ
k ¼ WðEÞk U

nþ1=2
k

� �
¼ H

ðEÞ
k U

nþ1=2
k

� �
� nk.
3.4. Remarks

Remark 1. We note that when the source terms are neglected in Eq. (28), the present scheme is reduced to the
traditional grid-aligned finite volume scheme using a linearized Riemann solver. Therefore, the computation
of the source terms is the only additional effort needed to account for the multi-dimensional effects, which
makes the present scheme efficient with the costs being comparable to the grid-aligned finite volume schemes.

Remark 2. The present scheme is similar to the CTU scheme of Colella [3]. The differences between the pres-
ent scheme and the CTU lie in a direct use of the equations in characteristic form to compute the numerical
fluxes and the consideration of the multi-dimensional effects by the inclusion of the source terms in these equa-
tions. This practice makes it not necessary to solve additional Riemann problems in the transverse directions.

Remark 3. A distinctive feature of the present method is the consideration of the multi-dimensional effects
due to viscous fluxes in the evaluation of the inviscid numerical fluxes when solving the Navier–Stokes equa-
tions. By analyzing the truncation errors of the present scheme shown in Eqs. (7) and (8), we found that when
the viscous effects are considered, the present scheme is formally second order accurate on smooth enough
meshes. However, when we omit the viscous contribution in evaluating the inviscid fluxes, the scheme will
become temporally only first order accurate.
4. Numerical tests

In this section, several test cases are presented to verify the accuracy as well as the robustness of the present
scheme. For the purpose of comparison, some test cases are also computed using the second order finite vol-
ume scheme based on the Roe’s approximated Riemann solver [14]. In the implementation of the Roe scheme,
the reconstruction procedure is the same as the present scheme, and the time-stepping algorithm is the two-
stage, second order Runge–Kutta scheme [17].

4.1. Accuracy

We use the case of radially symmetric flow [9] to study the accuracy of the present numerical scheme. The
initial condition has zero velocity and radially symmetric q and E which are expressed as
qðx; y; 0Þ ¼ Eðx; y; 0Þ ¼
1� 0:1ðcosð4prÞ � 1Þ if 0 < r < 0:5;

1 if r P 0:5;

�

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The problem is solved on a [�1,1] · [�1,1] plane domain.
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We firstly consider the inviscid flow governed by the Euler equations. This problem is firstly solved on a
1280 · 1280 grid and the numerical solution is considered to be the ‘‘exact’’ solution. Then the numerical
results on a sequence of grids are compared to the ‘‘exact’’ solution. Table 1 shows the computed error in each
component in both the 1-norm and max-norm. The order of accuracy is estimated from the 40 · 40 and
80 · 80 grids. In these calculations, the average operator L is set to
Table
Errors

Grid

20 · 20
40 · 40
80 · 80
Order

The go
the tw

Table
Errors

N

20
40
80
Order

The go
estima
Lða; bÞ ¼ aþ b
2

;

which means that limiter is not used. We can see that the results on the numerical accuracy of the present
scheme compare favorably with similar test case presented in [9]. It should be noted that the lower accuracy
of the max-norm can possibly be attributed to the non-smoothness in the initial condition at r = 0.5.

We then consider the viscous flow governed by the Navier–Stokes equations. The grids on which the com-
putations are performed are the same as the inviscid case and the Reynolds number is 1000. In these compu-
tations, the solutions are advanced to t = 0.45 to avoid the influence of the viscous diffusion reaching the
boundary. The rate of convergence are presented in Table 2. As in the inviscid case, the present scheme also
shows second-order convergence for the viscous flow.

4.2. Robustness and resolution

To verify the robustness of the present scheme, three test cases are computed using the present scheme by
solving the Euler equations, which are (1) Mach 20 inviscid supersonic flow around a circular cylinder [12]; (2)
Mach 3 wind tunnel with a step [20]; and (3) double Mach reflection of a Mach 10 shock [20]. These test cases
are difficult for Godunov-type schemes since the shock instability or the carbuncle phenomenon may occur
when the grid aspect ratio is large or the grid is fine enough [13]. The numerical results of these test cases
in terms of the density contours computed using the Roe scheme are presented in Figs. 3(a), 4(a) and 5(a).
And the corresponding numerical results obtained using the present scheme are shown in Figs. 3(b), 4(b)
and 5(b). The carbuncle instability of Roe scheme can be clearly seen in the numerical results. On the other
hand, the present scheme dose not produce the carbuncle instability according to the numerical results shown
in Figs. 3(b), 4(b) and 5(b). Recently, the carbuncle phenomenon was analyzed in [5] and it was concluded that
1
between the numerical solutions and the ‘‘exact solution’’ for the two-dimensional radially symmetric flow problem at t = 0.5

1-Norm errors Max-norm errors

q qu E q qu E

1.2593E � 3 9.7443E � 4 1.4495E � 3 4.6773E � 3 6.5207E � 3 6.1572E � 3
3.0164E � 4 2.2235E � 4 3.5156E � 4 2.6734E � 3 2.0598E � 3 3.6980E � 3
7.1893E � 5 5.1335E � 5 8.4470E � 5 7.5877E � 4 6.9428E � 4 1.0021E � 3
2.07 2.11 2.06 1.82 1.57 1.88

verning equations are the Euler equations. The errors are computed on three different grids. The order of accuracy is estimated from
o finest grids.

2
between the numerical solutions and the ‘‘exact solution’’ for the two-dimensional radially symmetric flow problem at t = 0.45

1-Norm errors Max-norm errors

q qu E q qu E

1.0359E � 3 8.8749E � 4 1.4495E � 3 7.8275E � 3 5.6520E � 3 1.0637E � 2
2.5342E � 4 1.8864E � 4 3.5156E � 4 2.6765E � 3 1.2312E � 3 3.6795E � 3
6.1197E � 5 4.1547E � 5 8.4470E � 5 5.6542E � 4 2.6419E � 4 7.7103E � 4
2.05 2.18 2.06 2.24 2.22 2.25

verning equations are the Navier–Stokes equations. The errors are computed on three different grids. The order of accuracy is
ted from the two finest grids.
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Fig. 3. Density contours of supersonic inviscid flow around a blunt body at M1 = 20. There are 20 cells in the radial direction and 720
cells in the circumferential direction. The numerical results are obtained with: (a) the second order Roe scheme; (b) the present scheme.
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Fig. 4. Mach 3 wind tunnel with a step. The numerical results in terms of the density contours at t = 4.0 on a 200 · 80 uniform grid are
obtained with: (a) the second order Roe scheme; (b) the present scheme.
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the numerical carbuncle phenomenon was due to an unconditional instability of the underlying mean flow.
Therefore, it is suggested that the use of a genuinely multi-dimensional upwind scheme alone does not help
for eliminating the carbuncle phenomenon [16]. However, the present numerical experiment shows that the
inclusion of multi-dimensional effects seems to be beneficial in improving the robustness of the numerical
scheme and curing the carbuncle instability in some well-known test cases.

The second order accuracy of the present scheme for problems with smooth solution has been verified in
Section 4.1. When the shock waves are present in the flow fields, another concern is the resolution to the shock
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Fig. 5. Double Mach reflection problem. The numerical results at t = 0.2 are presented. (a) Density contours predicted by the second
order Roe scheme on a 800 · 200 uniform grid. (b) Density contours predicted by the present scheme on a 800 · 200 uniform grid. (c) The
distribution of u along a horizontal line at y = 0.34 predicted by the second order Roe scheme and the present scheme on a 800 · 200 grid
as well as a 400 · 100 grid.
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waves. To verify the resolution property of the present scheme, the u-component of the velocity distribution
along the line y = 0.34 (away from the carbuncle instability region) of the double Mach reflection problem is
depicted in Fig. 5(c). The numerical results obtained using the present scheme and the second order Roe
scheme on a 800 · 200 grid as well as a 400 · 100 grid are shown in this figure. It can be seen that on the
800 · 200 grid, the present scheme and Roe scheme predict similar results with the present scheme capturing
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Fig. 6. The numerical solution for the 2D laminar boundary layer problem on a 320 · 120 uniform grid. (a) u+ � y+ distribution at
different locations of the flat plate computed by the present scheme. The output locations are: h, x = 150; d, x = 200; s, x = 250. The
solid line is the Blasius solution. (b) Pressure contours (max = 71.4, min = 71.8, D = 0.01) computed using the second order Roe scheme.
(c) Pressure contours (max = 71.4, min = 71.8, D = 0.01) computed using the present scheme.
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the shock waves as well as the contact discontinuity slightly sharper than the Roe scheme. On the 400 · 100
grid, results of the present scheme are closer to the finer grid solution than those of the Roe scheme.

4.3. Viscous flow simulation

In this section, we apply the present scheme to solve the flat plate boundary layer problem which is a more
practical viscous flow case than the case in Section 4.1. The free stream Mach number is M1 = 0.3, and the
Reynolds number defined by Re ¼ q1u1L

l1
is 3 · 104 where L is the length of the plate. Fig. 6(a) plots the u+ � y+

distributions at different locations computed by the present scheme using a 320 · 120 uniform grid with
Dx = 1.0 and Dy = 1.0. It can be seen that the numerical result of the present scheme agrees very good with
the Blasius solution. According to the numerical results in [21], the performance of the second order Van Leer
scheme [20] is rather poor on the same grid. We have also obtained similar results which are however not
shown here. The second order Roe scheme can capture the boundary layer as good as the present scheme,
but the fluctuations in the pressure field are observed in Fig. 6(b), especially near the leading edge of the plate
where the flow singularity exists. On the other hand, the present scheme predicts a very smooth pressure field
which can be seen in Fig. 6(c).
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5. Conclusion

In this paper, a second order multi-dimensional upwind finite volume scheme for solving compressible
Euler and Navier–Stokes equations is presented. In this scheme, the multi-dimensional effect is accounted
for by solving full governing equations on cell interfaces to evaluate the inviscid numerical fluxes. When
the Navier–Stokes equations are concerned, the contribution of the viscous terms on the inviscid numerical
fluxes is also included. The proposed scheme is designed to apply on general shape control volumes for solving
both Euler and Navier–Stokes equations with the efficiency being comparable to the grid-aligned finite volume
schemes. The numerical test cases indicate that the present scheme is second order accurate and outperforms
some well known grid-aligned finite volume scheme in terms of robustness and resolution to flow
discontinuities.
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